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The Localization of Angular Momentum
in Optical Waves Propagating Through

Turbulence

Darryl J. Sanchez1, Denis W. Oesch2
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2Science Applications International Corporation, Albuquerque, New Mexico, USA

Abstract: This is the first in a series of papers demonstrating that
photons with orbital angular momentum can be created in optical waves
propagating through distributed turbulence. The scope of this first paper is
much narrower. Here, we demonstrate that atmospheric turbulence imparts
non-trivial angular momentum to beams and that this non-trivial angu-
lar momentum is highly localized. Furthermore, creation of this angular
momentum is a normal part of propagation through atmospheric turbulence.

© 2011 Optical Society of America
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1. Introduction

Recently, orbital angular momentum (OAM) has been shown [1] to occur in optical beams.
That is, photons have been shown to carry a quantum effect that is traditionally associated
with matter. This effect is manefested by the Poynting vector precessing hellically about the
direction of propagation. Being quantum effects, they have wavefunctions and in general, the
orbital angular momentum wavefunctions vary in both amplitude and phase. Specifically, the
±1 states are given by a constant amplitude and uniform variation in azimuthal angle in phase,
i.e. e±iφ where φ is the azimuthal coordinate. It has been shown that the states can be created in
the laboratory, but to create even the lowest order states takes careful preparation--creation of
higher order states with azimuthal dependence of eimφ where m is an arbitrary integer, is more
difficult.
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While the phase of OAM states is precisely defined, the phase in atmospheric turbulence, on
the other hand, is defined by randomly varying index of refractions fluctuations. These index
fluctuations impose spatially and temporally random optical path differences on optical beams
passing through it. Since atmospheric density is low, these optical path differences appear as
phase-only disturbances to the beam. So, beams traversing atmospheric turbulence have mini-
mal amplitude fluctuations (propagation couples amplitude and phase, but over short distances
this coupling is minimal as born out at astronomical observatories) and randomly varying phase.
Being random, it appears to preclude with vanishingly small probability the helical phase pat-
terns indicative of OAM states.

Adaptive optics is designed to compensate for these random phase distortions. Theoretical
predictions of its ability to do so begin with the Helmholtz wave equation, ∇2E + k2n2E = 0
with E the electric field, k the wave number, and n the spatially varying index of refraction.
The solutions to which are well known to have no angular momentum. So, it’s not clear what,
if any, a quantum effect would have on adaptive optics performance. However, it has been
shown [2], that traveling waves can contain angular momentum and that this momentum is
comprised of spin and orbital components. And in fact, the standard theoretical adaptive optic
analysis [3, see for instance] initially begins with terms in the wave equation which can lead
to angular momentum, but then by rough calculation, the term is discounted due to its relative
size, 10−14 as small in the mean, vis-á-vis the other components in the wave equation. However,
as is shown in Section 3 the rough calculation overlooks details which show the possibility that
local effects can make the angular momentum term non-trivial.

The overall goal of this research is to demonstrate that non-trivial orbital angular momentum
is created in beams propagating through atmospheric turbulence. This is doubly difficult be-
cause (1) one must show how random phase can create pure orbital angular momentum states,
and (2) in measurements, the component that we would like to associate with angular momen-
tum randomly appears and disappears from frame to frame, implying that momentum is not
conserved, an impossibility. A companion paper [4] will address both of these issues and use
the result of this paper to demonstrate the existence of non-trivial turbulence-induced orbital
angular momentum. The scope of this paper, on the other hand, is much narrower.

The purpose of this paper is to demonstrate that using a proper wave equation, while angular
momentum is negligible in the mean, because turbulence is a random field, there are locally
intermittent regions where total angular momentum can be high; it is left to the companion
paper to demonstrate that this is in part orbital angular momentum. To this end, Section 2
defines the terms to be used and gives an overview and summary of the approach. Section 3
demonstrates the existence of non-trivial angular momentum and the conditions required for
this to be true. Finally, in Sections 4 and 5, we discuss our conclusions and areas for future
work.

2. Definition of Terms and Overview/Summary of Results

The basis of our treatment is to estimate the size of the terms in the wave equation and com-
pare the terms that create angular momentum to those that don’t. To do so requires a spectral
decomposition of the index fluctuations and the use of the norm of the Hilbert space of those
fluctuations as the measure of size. In this way, we will show that at the highest spatial frequen-
cies, the angular momentum becomes non-trivial.

Our physical situation is propagation though atmospheric turbulence, a weak, source-free
media with the permeability of free space approximately one and a permittivity equal to the
free space permittivity times the index of refraction squared. If we consider timescales long
compared to the frequency of the electric field’s oscillation but short compared to the evolution
of atmospheric turbulence, then the electric field can be written as E(r)eiωt , that is a spatially
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varying part times a quickly oscillating time part. With these restrictions, the apropos wave
equation is given by [3, see for instance]

∇
2E+ k2n2E+2∇(E ·∇) logn = 0 (1)

with k the wavenumber, n the atmospheric index of refraction. Traditionally in the field of
atmospheric propagation, the last term in Equation 1 is discounted due to it’s relative size. The
argument goes that with the index given by n = 1 + n1 > 1 with |n1| ≤ 10−3, then at optical
wavelengths k2n2 ≈ 1012. Then since log(n) ≈ n1 � 1, the third term is much less than the
second term.

The problem with this argument is that the index is a random variable and the problem of
taking the derivative of a random variable is ignored. Here, “size” is taken to be the norm. For a
Hilbert space, the square of the norm is the inner product. In this case, the Hilbert space of index
fluctuations--call it H --is equipped with the covariance function as its inner product. (This is
unusual so the point is clarified in Appendix A.) To calculate the norm, a spectral decomposition
of the index fluctuations is taken and the covariance in the spectral domain calculated. Since
the two spaces are isometric, this gives the desired estimate of size. This is possible since the
spectrum of index fluctuations is known, and since the Fourier transform of all elements in H
creates a conjugate Hilbert space isometric to the first [5].

Then, it is well known [2] that the angular momentum density is given by
∫

ρρρ ×E×H dρρρ

with ρρρ the transverse coordinates. Hence, a necessary and sufficient condition for the existence
of non-zero angular momentum is

ẑ ·E 6= 0 (2)

with ẑ the direction of propagation. With Equation 2 establishing the criterion, we will show in
the next section that the last term in Equation 1 acts as an angular momentum source term. (Note
in passing that if we had restricted ourselves to the customary Helmholtz wave equation, ∇2E+
k2n2E = 0, then terms of the form of Equation 2 cannot occur since for any propagation given
by the free space Helmholtz equation, E and H are orthogonal to each other and perpendicular
to the direction of propagation.)

As with atoms, angular momentum in photons is comprised of spin angular momentum plus
orbital angular momentum. To get a lower bound of what “non-trivial” means, say the spin
component is zero, and the orbital component is in the lowest non-zero state, i.e. it has 1h̄ of
momentum. The Poynting vector precesses helically because of a component of the electric
field in the ẑ direction. It has been shown that the ratio of the ẑ direction to the transverse
direction is λ . At optical wavelengths this is approximately equal to 10−6. Hence, we will
look for effects of this size. We will show in the following section that because atmospheric
turbulence is a random process, there exists localized regions in the atmosphere where this is
false with non-trivial probability.

As the conventional argument posits, in most cases, ∇(E ·∇) logn is small. However, in
the next section we show that in regions where high frequency fluctuations are present, ∇(E ·
∇) logn can be non-trivially large. For any given atmosphere, the total energy in these high
frequency patches is governed by the inner scale of turbulence. Calculation of the probability
of finding such a patch of atmosphere is beyond the scope of this paper.

3. Algebraic Development

3.1. The Source of Angular Momentum

Beginning with a wave with no angular momentum, we show that atmospheric turbulence cre-
ates some. In what follows, this allows use of the full expression when calculating angular mo-
mentum. So, consider a plane wave incident on atmospheric turbulence. Then ẑ ·E = ẑ ·B = 0
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and the third term in Equation 1 reduces in the ẑ direction to

ẑ ·∇(E ·∇) logn(r) = (E ·∇)
∂ logn(r)

∂z
(3)

We have used the fact that the components of E are constant, n(r) describes a physical process
with n(r) > 1, therefore log(n(r)) is smooth, so the derivatives can be interchanged. Since the
index varies isotopically, the conditions for creation of angular momentum are ubiquitous. The
physical cause of the appearance of this term is that as the wave interacts with the atmospheric
constituents, the electric field and the displacement current are in different directions; that is,
although ∇ ·B = 0, here ∇ ·E 6= 0, and this has the effect of scattering the componets of E into
the ẑ direction. Once this first interaction occurs, as shown in Equation 3, the beam contains a
component in the direction of propagation and thereafter much richer interactions occur. The
size of angular momentum term will be calculated under this richer condition.

3.2. Calculation of Size, i.e. of ||ẑ ·∇(E ·∇) logn||
To calculate the size of the angular momentum term, first consider the index fluctuations.
In particular, let n(r) = 1 + n0 + n1(r) with n1(r) a zero mean random variable and n0(r) a
constant measured to be approximately 10−3. Then the spectral decomposition of the varying
part is [6] n1(r) =

∫
dν(κκκ) eiκκκ·r with

∫
· a Riemann-Stiejles integral. Then note, n(r) > 1, so

|n1(r)|< n0; hence to one part in 103, logn(r) = n0 +n1(r). Furthermore, since n(r) is smooth,
its Fourier transform is smooth which allows the derivative and integral to be interchanged, and
∇ logn(r) = i

∫
dν(κκκ,z) κκκ eiκκκ·r. Then, the norm of the source term for angular momentum is

||ẑ ·∇(E ·∇ logn)||2 =
∣∣∣∣∣∣([ ∂

∂ z
+1
]
E
)
·
(

∇ logn+
∂

∂ z
∇ logn

)∣∣∣∣∣∣2 (4)

We wish to study the wave as the angular momentum term builds. So, consider a small region
(but big enough so that the ensemble averages are meaningful) near the turbulence boundary. In
this case we use the solution to the free space wave equation as the seed beam while recognizing
that it will soon contain a ẑ term, i.e. let E(r) = A(r)eik·r. Then resubstituting and assuming the
derivative of turbulence induced scintillation and phase is small, one obtains

||ẑ ·∇(E ·∇ logn)||2 = (1+ k2)
[∫

dκκκ (1+κ
2
z )(A(r) ·κκκ)2 f (κκκ)

]
(5)

where κκκ is the three coordinates of the spatial spectrum, kz = 2π/λ since the atmosphere is
isotropic, and f (κκκ) the spectrum (see Appendix B). Note in passing that as the longitudinal
term, ẑ ·E 6= 0, term grows and becomes appreciable with respect to the transverse term, ẑ ·E =
0, the assumptions here would have to be revisited and E be recalculated. However, this adds
an additional level of complexity that does not change the main conclusion of this paper.

3.3. ||k2n2E||
Since n(r) fluctuates near 1, to one part in 103, the size of the second term is

||k2n2E||2 = k4A2(r)

∣∣∣∣∣
∣∣∣∣∣
(∫

dκκκ f (κκκ)
)2
∣∣∣∣∣
∣∣∣∣∣= k4A2(r) (6)

where the central equality shows the explicit dependence on the spectrum and the right equality
the evaluation of it. Both will be used below.
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3.4. Comparison of Size – The Kolmogorov Spectrum

Comparison of the second and third terms in Equation 1 requires a spectrum. The Kolmogorov
spectrum (see Appendix B) is the most commonly used. So, substituting the Kolmogorov spec-
trum into Equation 5 and only considering the largest term

||∇(E ·∇ logn)||2

||k2n2E||2
=

k2 ∫ dκκκ κ2
z (A(r) ·κκκ)2 f (κκκ)

k4A2(r)
∫

dκκκ f (κκκ)
=

λ 2

2π

∫
dκκκ κ

2
z (ê ·κκκ)2 f (κκκ) (7)

in the ẑ direction. In the central equality, the integral form is intentionally kept to explicitly enu-
merate the difference between the angular momentum and non-angular momentum terms. The
most striking is the proportionality κ4 in the ẑ direction. This makes it strikingly apparent that
the third term in Equation 1 is dominated by high spatial frequencies. In the right most equality,
the aforementioned proportionality to λ 2--for which this ratio is typically discounted--appears.
Since the inertial range of the Kolmogorov spectrum is unbounded, i.e. the spectrum is −11/3
to all scales, there exists a frequency in the spectrum above which the numerator dominates
the denominator, i.e. for which the angular momentum term dominates the customary term. In
particular,

||∇(E ·∇ logn)||2

||k2n2E||2
→ ∞ for κ large (8)

That is, the size of the term that produces angular momentum can become arbitrarily larger than
the customary term that is kept.

However, to do so requires arbitrarily high spatial frequencies, and such structures are not
supported in real atmospheres. So, let’s consider a more physical situation. (But also note that
as the angular momentum term grows, at some point it is comparable in size to the customary
terms and the assuptions leading to Equation 5 would have to be revisited.)

3.5. Comparison of Size – The von Karman Spectrum

The von Karman spectrum is another commonly used spectrum (see Appendix B). This spec-
trum limits both the upper and lower frequencies. For our purposes here, it exponentially ex-
tinguishes frequencies higher than a characteristic frequency, call it κi [3]. Substituting into
Equation 7

||∇(E ·∇ logn)||2

||k2n2E||2
∝ λ

2
∫

dκ κ
4 (κ2 +κ

2
o )−11/6 exp

(
−κ2

κ2
i

)
(9)

Immediately obvious, unlike the Komogorov spectrum, this ratio is finite in all cases, but also
note, there is an amplification at the frequencies closest to κi. Since for the atmosphere, κi� 1,
the value of the numerator will be dominated by frequencies closest to κi. Whether it is non-
trivial is solely a function of κi.

κi is the inverse of the inner scale of turbulence, Li. The inner scale is the characteristic length
at which the atmosphere becomes viscous and turbulence (motion) gets converted to heat.
Measurements have found Li to be 1−5mm at sea level and centimeters at higher altitudes. Fol-
lowing standard practice, consider κi constant; then the integrals can be performed. This is done
numerically for three values of the innerscale, Li = {0.1mm,1mm,10mm}; these values bound
the range of typically measured inner scales. The values of Equation 9 are {55,2.7,0.12}×10−6

respectively and recall that 10−6 would be significant. Based on this rough calculation, the ef-
fect is on the cusp of detectability.

But recall, this analysis is performed near the turbulence layer boundary with a patch size
large enough to give reasonable statistics. Since the atmospheric outer scale--the smallest patch
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giving proper statistics at all frequencies--for astronomical imaging is approximately 10m, con-
sider patches of this size. Then propagation over 1Km will yield 100 independent source patches
of angular momentum, each contributing equally as a source. In this example, the value of the
ratio in Equation9 is multiplied 100-fold. And furthermore, since propagation through turbu-
lence is not restricted to 1Km, the ratio could grow very much bigger.

Hence, we have shown that there is a viable mechanism for creation of non-trivial angular
momentum in beams and that this will occur in the localized regions of high spatial frequencies.

4. Discussion

The purpose of this paper is to demonstrate that beginning with the full wave equation, while
angular momentum is negligable in the mean, that because turbulence is a random field, there
can be local regions where it is high. Equations 7 and 9 demonstrate this at the highest spatial
frequencies.

4.1. The Probability of non-zero Angular Momentum

An immediate question then is “what is the probability for a given atmosphere that the inner
scale will be of that size?”. So, while we have shown that non-trivial angular momentum can
occur, calculating the probability of such as occurrence is another matter. Calculating the prob-
ability is equivalent to calculating the probability that κ > κ thresh given that κi < κ thresh where
κ thresh is the threshold for detection of angular momentum. This calculation is the complemen-
tary problem to the Fried “Lucky Imaging Problem” [7]. Whereas there, Fried calculated the
probability that locally (over the telescope diameter) the atmosphere is unusually quiescent, i.e.
is comprised mostly of low frequency components, here, we are interested in calculating the
probability that locally (over the atmosphere interrogated by an optical beam) the atmosphere
is unusually active. Enumerating this calculation is beyond the scope of this paper.

4.2. The Innerscale and κi

The inner scale is the characteristic length at which the atmosphere becomes viscous and wind
velocity is converted into heat. We have interest in this only to the extent that this mechanism
quashes the high frequency fluctuations responsible for the creation of angular momentum.
Since based on our expressions, the inner scale dominates at the very frequencies where the
effect occurs, factors of two can be important to this effect occurring on measurable scales or
not. Unfortunately, there are no known references for the physics of how the highest spatial fre-
quency components are dissipated. So, while here we follow conventional notation and assign a
frequency to the inverse characteristic scale of heat dissipation, on physical grounds, this must
be a gross simplification. How, for instance, do the highest frequencies form and how does the
viscousity dissipate them; both of these are temporal effects, yet this is not considered here. For
the purposes of this paper, this is merely noted as an area of further research.

4.3. Further Work

Much work remains to be done. Some of this is presented in a companion paper, where it is
demonstrated that the localized angular momentum is in part orbital angular momentum, and
that this orbital angular momentum is equivalent to the measurement of branch points. So, even
though the source term in Equation 1 may lead to a (perhaps small) Ez term locally, propagation
through extended turbulence will cause this term to accumulate. In fact, it is well known that
propagation through extended turbulence causes branch points to appear, and that propagation
through very much extended turbulence causes the branch point density to grow to the extend
that they are a nuisance to adaptive optic performance--a nice corrobaration of results and
insight into the physical process of formation of angular momentum.

 
Approved for public release; distribution unlimited; 2 October 2012.

6



Some remaining work is still open. For instance, calculation of the probability of κ > κ thresh

is beyond the scope of this paper. Also, the result here applies to a local patch; once the lon-
gitudinal component is non-trivial with respect to the transverse components, the expressions
leading to Equation 4 must be reevaluated; this is beyond the scope of this paper.

5. Summary

We have demonstrated that atmospheric turbulence imparts non-trivial angular momentum to
beams and that this is a normal part of progagation through turbulence. This non-trivial an-
gular momentum is highly localized since it is caused by the highest fluctating regimes in the
turbulence.
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A. The Hilbert Space of Index Fluctuations

Atmospheric turbulence is described by a spatially varying perimittivity, ε(r). It is related to the
index of refraction as ε(r) = ε0(r)n2(r) with ε0 the permitivitty of free space and n the index
of refraction. For the atmosphere, the index can be written (for clarity dropping the spatial
dependance),

n = 1+n0 +n1

with n > 1, n0 a constant ≈ 10−3, and n1 a varying term with a zero mean. Because this index
describes atmospheric fluctuations, n is real, n > 1, and E(n1) = 0 with E(·) the expectation
operator.

A.1. Construction of the Hilbert Space

Consider the set of all possible index fluctuations, {n1}. Since n1 describes a physical process,
n1 ∈ L2 with L2 the space of square integrable functions. Note, that since we are describing
atmospheric fluctuations which by definition does not include the vacuum, 0 /∈ {n1}. Also note,
that {n1} ⊂ L2 since the atmosphere is finite, max({n1})� 1, and min({n1}) >−n0.

Complete the set {n1}. Since L2 is complete and since {n1}⊂ L2, this completion necessarily
lies in L2. Choose the smallest such completion and call it Hn. Hn is a Hilbert space.

A.2. The Covariance as an Inner Product

Let the notation (·, ·) denote the inner product. Then, the definition of the inner product is (Reed
and Simon, p. 36)

(i) (x,x)≥ 0 and (x,x) = 0 iff x = 0
(ii) (x,y+ z) = (x,x)+(x,z) (10)
(iii) (x,αy) = α(x,y)
(iv) (x,y) = (y,x)∗

where V is a vector space, x,y,z ∈V , and α ∈ C
Let R(·, ·) denote the covariance function. Then, the covariance function is defined as

(Gikhman, p. 9)

R(x,y) = M([ξ (y)−M(ξ (y))][ξ (x)−M(ξ (x))]∗)

 
Approved for public release; distribution unlimited; 2 October 2012.

7



with R(x,y) the covariance function, M(·) the expectation operator, ∗ the complex conjugate,
and ξ (·) a function that maps V →V . For our purposes, let ξ (x) = x. Then,

R(x,y) = M([y−M(y)][x−M(x)]∗).

Gikhman shows

(i) R(x,x)≥ 0 and R(x,x) = 0 iff ξ (x) = constant
(ii) R(x,y) = R∗(y,x)

(iii) |R(x,y)|2 = R(x,x)R(y,y)

(ii) ∀n,x1, . . . ,xn ∈V and λ1, . . .λn ∈ C,
n

∑
j,k=1

R(x j,xk)λ jλ
∗
k ≥ 0

To show that R(·, ·) is an inner product on Hn, we will show the four parts of the definition
in Equation 10. To begin, let x,y,z ∈Hn. So, M(x) = M(y) = M(z) = 0. Using the definition of
the covariance function, it is trivial to show the first part of (i), and also (ii), (iii), and (iv) in the
definition, namely

R(x,x) = M(x2) > 0
R(x,y+ z) = R(x,y)+R(x,z)

R(x,ay) = aR(x,y)
R(x,y) = (R(y,x))∗

The only point needing clarification is the second part of (i), i.e.

R(x,x) = 0 ⇔ x = 0.

Since we are describing atmospheric fluctuations, 0 /∈ {n1}. But note, Hn is the completion of
{n1} and 0 ∈Hn. Then since M(x2) > 0, R(x,x) = 0 if and only if x = 0.

Following Ghikman, Hn is a Hilbert space of a random process (the atmospheric fluctua-
tions). The Fourier transform of this space is also a Hilbert space and is isometric to the first.
So, the norm (inner product) in Hn equals the norm (inner product) of the transformed variable
in the other. In the text, the norm is always evaluated in the transformed space.

B. The Spectrum of Turbulence

Based on Kolmogorov’s dimensional analysis, it can be shown that the power spectrum in the
inertial range is given by

f (κ) = Cκ
−11/3 (11)

where κ is the spatial frequency. This is the Kolmogorov spectrum.
Physically, spatially there are upper bounds, Lo, and lower bounds, Li, that the atmosphere

can attain. This is captured by the von Karman spectrum

f (κ) = C(κ2 +κ
2
o )−11/6 exp

(
−κ2

κ2
i

)
(12)

with κi = 2π

Li
the inner scale (in frequency) of turbulence, κo = 2π

Lo
the outer scale (in frequency),

and Li and Lo are respectively the inner and outer scale. The inner scale is the length at which
turbulence gets dissapated by heat. For our purposes, the inner scale is the smallest scale at
which turbulence structures are supported.
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